
Abstract— Computer easily recognize Semantic Web Services

(OWL-S) instead of web services like WSDL. we are going to

convert web services to semantic web services so discovering

and selecting the services get easier. Ontology repository and

standardization engine are basic steps for this conversion. The

proposed system presents a distributed Web service discovery

architecture This architecture is based on the concept of

distributed shared space and intelligent search among a subset

of spaces. It allows the publishing of Web service descriptions

as well as to submit requests to discover the Web service of

user’s interests.

Keywords— WSDL, OWL, Mapping, OSSE.

I. INTRODUCTION

Semantic Web Services (SWS) [6], are easily recognize

by machine. The Semantic Web extend human-readable

web to machine-readable form so Computer can search,

process, integrate, and present the content of the resources

in a semantic way. When we get any service request we can

optimize results in Discovery process [7] as well as

distinguished by its service repository based on the

advertisements of semantic and non-SWS. The

advertisement of services improves the speed and quality of

the discovery process. The organization of discovery

system mainly divided in two steps that is firstly create

database, and second one discovery process.

A. Database Creation:-

In Database Creation the semantic services are registered

and then follows below steps: The WSDL [8] of the already

existing WSs mapped into a semantic one OWL-S [9].

Register all the services whether they belong to WSs or

SWSs in the Unclassified Profiles database. Classify these

data into clusters to make the discovery easier and faster.

B. Discovery Process:-

In Discovery Process receive the user request of a certain

service and then follows below steps: Search into the

database for the suitable results. By Ranking the results

enhance the user selections. For conversion WSDL to

OWL-S redefine the conventional web services using

semantic markups. After this process all owl’s files are

stored in repository and then apply ontology search and

standardization engine (OSSE) that helps in the

standardization process. OSSE’s function is based on

searching for a suitable ontology in the ontology repository.

Objective: To Discover any service in web services is time

consuming. To overcome this drawback, we introduce a

distributed web service discovery architecture this help to

reduces the communication overhead and the result

obtained is more precise.

Fig.1 steps to deal with any web service (WS):

1. Advertisement aims to publish information about the

benefits of the service and how to use it.

2. Discovery aims for finding the list of services that can

possibly satisfy the user requirements.

3. Selection witch specify select most suitable WS.

4. Composition integrates the selected WSs into a

compound process.

5. Invocation that invokes a single WS or compound

Process by providing it with all necessary inputs .

Fig.1 Web services life cycle.

II. RELATED WORK

ASSAM (Automated Semantic Service Annotation with

Machine Learning) tool. This tool generate OWL-S file.

While using This tool few problems has to face like an

organization for the available ontologies. Because when we

use two classes this yield huge number of ontologies so

ISSN:0975-9646
R. Jamgekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 10-14

Toward SWSs Discovery: Mapping from WSDL

to OWL-S Based on Ontology Search and

Standardization Engine

R. Jamgekar#1, N. Sawant*2, P. Bansode#3

Dept. of CSE, SKN Sinhgad College of Engineering solapur, solapur, India

Dept. of CSE, SKN Sinhgad College of Engineering Korti, Pandharpur, Maharashtra

*Dept. of CSE, SKN Sinhgad College of Engineering Korti, Pandharpur, Maharashtra

www.ijcsit.com 10

organization problem is arise. The tool outputs unordered

list So, the choosing class is difficult for any user. This

paper is meant about classification of web services. So,

ASSAM can be considered as a novel web services

classification tool instead of mapping tool.

III. IMPLEMENTATION

OSSE IMPLEMENTAION:-

It does not make any sense to find the same definition for a

certain concept repeated more than one time in the system.

This does not include the case when there are different

definitions for the same concept and each of them adds new

information. For instance, one ontology might define the
class ―Animal‖ equivalent to ―Living thing AND NOT

Human.‖ Another ontology might define the class ―Animal‖

as ―the Union of Herbivores AND Carnivores.‖ Both

definitions are correct, since they highlight different aspects

or properties for the class animal, and they cannot be

considered mutually exclusive. It is illogic to define a

concept isolated from the already existing concepts

definitions. In other words, it is better from standardization

point of view—to try to find a relation between the new

concept definition and the already existing ones. This OSSE

engine takes in consideration as mentioned before. The

input is a concept with certain properties and the output is

an ordered list of ontologies. The name of the required

concept is the primary supplied information used by OSSE.

The engine main stages are described below:

A. Linguistic search:

OSSE uses the text mining techniques to extract keywords

in the concept request. Then, it tries to find the synonyms

and related words to expand our list by the aid of WordNet

which includes over 30,000 word. This list of keywords is

used to search in the local ontologies repository to get a list

of related ontologies. The list of ontologies is arranged

based on the keywords that they contain in terms of term

frequency. For each ontology, the summation of term

frequency values of each keyword that belongs to the

concept request keywords list and belongs to the ontology

at the same time is computed.

This summation represents a measure of the degree of the

ontology linguistic relevance (OLR). Degree of OLR can

be

calculated by where NCK is the total number of concept

request keywords. The function getTF() is used to get the

previously computed TF value of the keyword (K) in the

tested ontology. The TF value is computed for each

ontology keyword during the process of new ontology

insertion. Due to large number of threshold value for OLR.

In some cases, OSSE fails to find any related ontology in

the local repository. Then, it asks Swoogle for help to find

some OWL. OSSE downloads the top five ontologies. If the

service provider accepts any of these downloaded

ontologies, the system automatically inserts ontology to the

local ontology repository using the inserting methodology.

This process grantees that our ontology repository is

extended to satisfy the service providers needs without

changing the features of our repository. Downloading and

inserting the selected ontology in the repository is a process

that consumes undetermined time. This time depends on the

downloading speed and the degree of ontology complexity.

It is important to note that the inserting process is

performed after finishing the process of choosing the

suitable concept. In some rare cases, searching in Swoogle

returns with no results. OSSE inserts the temporary

ontology into the local repository using the inserting

methodology. A long list of related ontologies is expected.

B. Structural refining:

OSSE refines the list produced by the linguistic search. This

refining is performed by searching in each ontology in the

list to find any concept related to the required concept. If

OSSE does not find any related concept in a particular

ontology, this ontology is deleted from the possible

ontologies list. ―Data concerning the logical structure‖

which are collected using the inserting methodology, are

considered to be the base of the structural refining. The

ontology is checked to answer four serial questions that

correspond to the four possible concept-to-concept

relationship as shown in Fig. 3. When we have a ―yes‖

answer to any question of them, OSSE stops the checking

process of the ontology and assigns a rank value for it.

―Identical‖ relation has the highest ranking value followed

by ―Super,‖ ―Sub,‖ and ―Neighbor‖ relations in order from

highest to lowest ranking value. After completing the

process of checking the ontologies list, OSSE reorders the

ontologies list according to the computed ranking value.

C. Statistical refining:

Concepts Mapping History database. These data are used to

rerank the possible ontologies list. If there are two

ontologies with the same rank, OSSE uses historical data to

know the most preferred ontologies for the services

providers. After these three steps, OSSE has an ordered

possible ontologies list for the concept request. This list is

presented to the service provider, who chooses the most

suitable ontology. His choice recorded in the ―Concepts

Mapping History‖ database. The process of ontology

editing causes some changes in the database and the file

system of the local ontologies repository.

OSSE depends on local ontology repository to retrieve

information about already exiting ontologies. This

dependency makes OSSE work in fast and accurate manner.
OSSE has three main features:

1] capability to find the matched ontology for an already

existing concept.

2] Ability to access Swoogle web service to download

suitable ontologies for a requested concept that does not

belong to the local repository.

3] Ability to extract the suitable concept to concept

relationships.

R. Jamgekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 10-14

www.ijcsit.com 11

Fig. 2. Linguistic of the OSSE.

Fig. 3. Structural of the OSSE.

Fig.4. Statistical of the OSSE.

Fig.5. Framework of proposed space-based system overview

Figure 6. Discovery architecture

R. Jamgekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 10-14

www.ijcsit.com 12

Distributed Web Services Implementation:

The problem of standardization in the development: -

This architecture allow users to create a new virtual shared

space, or use an existing one if available. Messages can be

written to or read from the space. Any user (either a service

provider or a requester) can have access to the information

available on the space (subject to security policy).Thus,

when looking for aWeb service, a request can be sent to the

virtual shared space instead of sending to individual Web

service description repositories. The added advantage of

this approach is that it reduces the communication overhead

and the result obtained are more precise. The detailed

architecture and its components are described in next

section.

Component Descriptions
Based on the above mentioned architecture concepts the

architecture components and their interactions are

introduced

in this section. Figure 2 depicts the proposed architecture.

These components are loosely coupled and are pluggable.

This allows replacement of existing implementations over

time with alternative or more expressive implementations

as well as new components.

Discovery Manager: Discovery manager is a gateway to

distributed Web service discovery and provides access

interfaces serving as a point of interaction. It receives

requests from the user and returns response to the user.

When a request is received, it schedules a job for query

parser.

Query Parser: Query parser is responsible for parsing each

incoming requests. It determines the requests type (e.g.,

read, write, take) and forwards them to space reader or

space writer.

Space Reader/Writer: The job of finding the available

spaces, writing messages to and reading messages from a

space is handled by space reader/writer component. It

consist of two sub-components, reader and writer. Reader

finds and reads messages from the shared space and writer

writes messages to the spaces. It is the job of the writer to

keep status of requests to the local storage space.

Matchmaker: The concrete matchmaking between the

requester goal and available Web service descriptions is

done by the matchmaker component. It receives the set of

Triples from the space reader, obtains goal descriptions

from the local storage space and performs matchmaking

between them.

Local Storage Space: The local storage space is used to

store the intermediary data produced by the distributed Web

service discovery system. It is also used for storing

interface descriptions of the internal components and

information about shared spaces

Interfaces For the distributed Web service discovery

architecture to work properly interfaces has to be defined

and implemented. In the following the interfaces of main

components shown in figure 6 are described and their

implementation approach is discussed. The interfaces

presented here are the basic required interfaces, and they

can be extended to support more advanced operations

without hindering the core idea of the architecture.

IV. RESULTS

we use many WSDL files as a case study to monitor the

mapping process (specially the automatic phase) and to

evaluate its results. Some of these files belong to OWLS-

TC [28] which provides the WSDL file and its

corresponding OWLS file. This collection is used to

compare the results of our mapping process with those

already included within the collection. The rest of the

WSDL files belong to real web services which help us to

study the behavior of our algorithm in a practical

environment.

Fig. 7 System Performance

comparison between the WSDL2OWL-S tool [18] and the

proposed mapping algorithm. The figure presents the

relation between the number of concepts generated by the

system and the number of registered services. We can

obviously note that the number of used concepts will be

increased when the number of services increases in both

cases. But, in the case of SDL2OWL-S tool the number of

concepts increase with very high rate when compared to the

case of our proposed algorithm. For example, when the

number of registered services becomes 1,000, the average

number of concepts per service is 2.66 in case of

WSDL2OWL-S and 0.4 in case of the proposed algorithm.

So, the proposed algorithm is more scalable than

WSDL2OWL-S. It is important to state that the

performance of the discovery process is negatively affected

when the number of concepts defined in the system

increases. That is because the study of inputs/outputs

matching between the request and the available services is a

major task for any discovery process. There is no doubt that

this matching become faster and more accurate when the

total number of concepts which defines the inputs and

outputs types become smaller. So, the proposed algorithm

will be better than WSDL2OWL-S from the discovery point

of view.

R. Jamgekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 10-14

www.ijcsit.com 13

Fig. 8 Accuracy Performance

Fig. 9 WSDL to OWL

V. CONCLUSSION

Semantic web services used OWL in a mapping process

that helps to convert WSDL files to OWL-S file. Mapping

algorithm has backbone of local ontology repository &

OSSE. It enhance the results of OSSE by using the

structural refining stage SWSs ranking algorithm. This

matchmaking process measure the semantic distance

between the user requests and the available services. The

problems of wasted time, non accurate mapping and

absence of any standardization are most important issues

that SWS has to deal. A distributed Web service discovery

architecture is designed to be reliable, flexible and scalable.

It allows the publishing of web service descriptions as well

as web service of user’s interests. A distributed Web service

discovery architecture is built in such a way to reduces the

communication overhead and the result obtained is more

precise. As part of our next step, we intend to upgrade the

current implementation from centralized shared space to

Distributed shared space. While doing so, WSMX Web

Service Execution Environment) will be used as a test bed

platform. In the current implementation, shared space is

centralized. It allows to create virtual spaces and query

those virtual spaces. As part of our next step, we intend to

upgrade the current implementation from centralized shared

space to distributed shared space.

ACKNOWLEDGMENT

I would like to express thanks to my project guide

Jamgekar R.S. and co-guide Sawant N. M. He helped and

supported for this work and No words are sufficient to

express my gratitude to my family for their unwavering

encouragement.

REFERENCES

[1]. T. A. Farrag , A. I. Saleh , ―Toward SWSs discovery : Mapping from

WSDL to OWL-S Based on Ontology Search and Standardization

Enginee ‖ , IEEE Transaction on Knowledge & Data Engg, vol. 25

, No. 5 , May 13.

[2]. D. Martin , M. Burstein, D. Mcdermott, S. Mcilraith , M. Paolucci ,

K. Sycara , D.L. Mcguinness, E. Sirin , and N. Srinivasan , ―

Bringing Semantics to Web Services with OWL-S ‖ World Wide

Web , vol. 10, no. 3, pp. 243-277, Sept. 2007.

[3]. S. Vinotha , J. Vikneshwaran , ― Relevency Based

ContentSearch in Semanti Web “, International Journal of

Emerging Trends and Technology in Computer

Science(IJETTCS),Vol. 3 , Issue 2 , March – April 2014.

[4]. S. Pradeepha , B.Lakshmipathi , ― Augmenting the SWS Discovery

by Categorization of Web Service " , International Journal

of Advanced Research in Computer Science and Tech , Vol .2

Issue Special1 Jan- March 2014.

[5]. J. Praba. & M. A. Hema , " Semantic Web Service To Support

Modeling In Mapping From Web Service Description

Language", International Journal of Computer Science and

Engg,Vol. 3, Issue 3, May 2014.

[6]. M . Burstein , C . Bussler , M. Zaremba , T. Finin , M.N. Huhns ,

M. Paolucci , A.P. Sheth , and S. illiams , ― A Semantic Web

Services Architecture ‖ , IEEE Internet Computing, vol. 3, no. 5,

pp. 72-81, Sept./Oct. 2005.

[7]. T .A. Farrag ― A Cluster-Based Semantic Web Services Discovery

and Classification ‖ , Proc . ACME Second Int’l Conf .

Advanced Computer Theory and Eng., pp 1825-1834, 2003.

[8]. ―Web Services Description Language (WSDL)” , W3C Note,

2001.

[9]. ―Web Ontology Language for Service OWL-S‖ , W3C Member

Submission, 2004.

[10]. B . Di Martino , ― Semantic Web Services Discovery Based on

Structural Ontology match ‖ , Int’l J. Web &Grid Services , vol.

5 , no. 1, pp. 46-65, 2003.

[11]. M. Paolucci, N. Srinivasan, K. Sycara, and T. ishimura,― Towards

a Semantic Choreography of Web Services: From WSDL to

DAML-S‖, Proc. First Int’l Conf. Web Services (ICWS ’03), pp

22-26, June 2003.

R. Jamgekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (1) , 2018, 10-14

www.ijcsit.com 14

